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ABSTRACT

Aim: Patients undergoing orthognathic surgery frequently seek online resources to better understand the procedure, risks,
and outcomes. As generative artificial intelligence (Al) models are increasingly integrated into healthcare communication,
it is essential to evaluate their ability to deliver accurate, comprehensive, and readable patient information.

Methods: This study conducted a comparative assessment of two large language models (LLMs)—ChatGPT-4.5 and
DeepSeek-V3-R1—in answering frequently asked orthognathic patient questions, analyzing accuracy, completeness,
readability, and quality across English (EN) and Turkish (TR). Twenty-five patient-centered questions categorized
into five clinical domains yielded 200 Al-generated responses, independently evaluated by two oral and maxillofacial
surgeons (OMFSs) using a multidimensional framework. Statistical analyses included non-parametric tests and inter-
rater reliability assessments (Intraclass Correlation Coefficient (ICC), and Cohen’s Kappa).

Results: Significant differences emerged across clinical categories in difficulty and accuracy scores (p <0.05). Questions
in the “Postoperative Complications & Rehabilitation” category were least difficult, while those in “Diagnosis &
Indication” category were rated most difficult but achieved the highest accuracy and quality ratings. English (EN)
responses significantly outperformed Turkish (TR) responses in readability, word count, and accuracy (p <0.05), though
completeness and quality did not differ significantly by language. No significant performance differences were found
between the two chatbots. Inter-observer agreement was generally high, except for completeness (p = 0.001), where
Observer-1 assigned higher scores.

Conclusion: Both LLMs effectively generated clinically relevant responses, demonstrating substantial potential as
supplemental tools for patient education, although the superior performance of EN responses emphasizes the need for
further multilingual optimization.
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INTRODUCTION

The use of the internet for accessing health-related
information has markedly increased in past three years
(1). Orthognathic surgery, essential for managing
dentofacial deformities, prompts many patients
to seek information online due to limited access
to specialists and the complexity of the treatment
process. Patients typically investigate the surgical
procedure, recovery timeline, associated risks, costs,
and expected outcomes (2). Research shows that
this information-seeking behavior intensifies during
the decision-making period and preoperative phase,
primarily via medical websites, blogs, and forums (3).
Postoperative information needs also persist and are
often addressed through professional communication
and support networks (4). This trend highlights both
the procedure’s growing prevalence and the critical
need for reliable, accessible information.

Findings over the past two years highlight Al’s
growing effectiveness and reliability in medical
contexts, underscoring its expanding role in patient
counselling and information dissemination. Recent
studies have assessed how LLMs—including ChatGPT,
DeepSeek—respond to patient queries in healthcare
(5-9). ChatGPT-4.5 (developed by OpenAl, USA) and
DeepSeek-V3-R1 (developed by DeepSeek-Al, China)
are increasingly used in healthcare for responding
to patient queries, owing to their advanced natural
language processing capabilities. ChatGPT-4.5 is the
latest model in OpenAl’s GPT series, while DeepSeek-
V3-R1 is the latest interactive model trained on
large-scale datasets in DeepSeek-Al models. Both
models stand out for their ability to generate fast
and comprehensive responses to complex medical
questions (10).

This study aimed to compare ChatGPT-4.5 and
DeepSeek-V3-R1 in terms of response accuracy,
comprehensiveness,  readability, and  overall
quality for frequently asked patient questions on
orthognathic surgery. It also evaluated the effects of
language (EN vs. TR) and question difficulty on model
performance. As the first study to provide a cross-
linguistic comparison of LLM outputs in this context, it
underscores the potential of these models to enhance
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access to trustworthy health information and reduce
language-based communication barriers. Supporting
standardized, multilingual communication in global
healthcare was a key motivation for this research.

MATERIAL AND METHODS

Study design

Since this research did not involve human subjects or
personal health data, formal ethical approval was not
required. Nonetheless, all testing was conducted in
a neutral setting to uphold the integrity of the study.
To enhance transparency and ensure methodological
consistency, the METRICS framework (Model,
Evaluation, Timing, Range/Randomization, Individual
factors, Count, and Specificity of prompts and
language) was adopted (11). This structured approach
also contributes to standardizing Al evaluations
in healthcare and minimizing potential sources of
bias. The methodological workflow of the study is
summarized in Figure 1.

To simulate an average user experience and reduce
potential bias, both models were accessed via a newly
created Google account using the “Continue with
Google” option. Prior to testing, all browsing history,
cookies, and cache were deleted by selecting the “Clear
Browsing Data” option with the time range set to “All
Time”.
Question development,
sampling

categorization and

The sample of patient-centered questions was derived
using a purposive sampling strategy, specifically
combining expert clinical input with a structured
review of existing patient education materials. The
authors created a preliminary question pool by
adapting content from published literature (2,12-
14) and reviewing patient guidelines issued by
professional bodies, such as the American Association
of Oral and Maxillofacial Surgeons (AAOMS) and the
British Association of Oral and Maxillofacial Surgeons
(BAOMS). Additional questions were identified
through a targeted Google search using keywords such

as “orthognathic surgery”, “patient FAQs (frequently
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Figure 1. Flowchart of the study.

asked questions)”, and “patient guide”, focusing on the
top-ranking results from reputable hospital and clinical
websites, including large academic medical centers
and national surgical institutes.
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The  emphasis was placed on thematic
representativeness and content saturation, rather than
statistical generalizability, aligning with the principles
of purposive sampling as outlined by Etikan et al.
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(15). This approach ensured the inclusion of clinically
relevant, high-frequency, and informative questions
for comparative evaluation across Al models.

The final set of 25 patient-centered questions
was selected after excluding those with financial
content and removing duplicates (Table 1). To
enhance analytical consistency, the questions were
ontologically categorized according to the medical

process-based framework proposed by Chong et
al. (16), which classifies patient inquiries into five
distinct domains: (1) Diagnosis & Indication, (2)
Treatment & Planning, (3) Surgical Process & Timing,
(4) Postoperative Complications & Rehabilitation, and
(5) Long-Term Outcomes. This classification facilitated
a structured analysis of Al model performance across
different stages of the orthognathic surgery care
continuum (Figure 2).

Table 1. Patient questions and the categories

ID | Question

Category

What exactly is orthognathic surgery?

Who needs orthognathic surgery?

Which conditions can orthognathic surgery address?

Can this surgery be done purely for cosmetic reasons, even if there’s no functional issue? | Diagnosis & Indication

At what age is orthognathic surgery performed?

How do I know if | need orthognathic surgery vs. just orthodontic treatment?

How do | find or choose a qualified surgeon and orthodontist for my treatment?

Do | need braces before orthognathic surgery?

Treatment & Planning

O | 0 N oo U | b W N

How should | prepare for jaw surgery and how?

=
o

How is orthognathic surgery performed?

—
=

How long does orthognathic surgery take?

Operation Process & Time

=
N

What type of anesthesia is used?

=
w

Will I need to have my jaws wired shut, and for how long?

=
D

What is the typical recovery time after orthognathic surgery?

15 | Is the procedure painful, and what can | expect in terms of post-operative discomfort?

Postoperative Complications
& Rehabilitation

16 | How do I manage swelling and other potential side effects after surgery?

17 | Is numbness or loss of sensation normal after surgery, and will it go away over time?

18 | What are the potential risks and complications of orthognathic surgery?

19 | How soon can | return to work or school after surgery?

20 Does having this surgery improve facial appearance as well as jaw function?

21 | Will orthognathic surgery affect speech or eating in the long run?

22 Arethere any long-term lifestyle changes required after orthognathic surgery?

23 | Can | have symmetry disorder in my face after surgery?

Long-Term Results

24 Does this surgery correct breathing or snoring problems?

25 | After orthognathic surgery, may | need to have another operation in the future?
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Figure 2. Question distrubution according to the
categories.

Questioning

Access to ChatGPT (OpenAl) and DeepSeek Al was
obtained through active subscriptions to ChatGPT-4.5
and DeepSeek-V3-R1, which offerimproved processing
power, priority usage, and increased accuracy through
the latest updates. To systematically evaluate the
models, two independent researchers conducted the
questioning sessions. One researcher interacted with
the models in Turkish (TR), while the other did so in
English (EN).

All interactions were carried out using newly created
user accounts in a clean browsing environment (with
cleared cookies, cache, and history) to minimize
contextual bias. Each session was conducted on a
different day to reduce potential carry-over effects,
and every question was submitted in a distinct
conversation thread to ensure isolated contextual
modeling using newly created accounts and a clear
browsing environment.

Response collection

Model outputs were systematically collected across
four distinct language-model pairings: ChatGPT (TR),
ChatGPT (EN), DeepSeek (TR), and DeepSeek (EN).
All responses were preserved in their entirety and
archived in a structured format to ensure consistency
and enable comparative evaluation.

Response evaluation

Model-generated answers were assessed using a
multi-dimensional framework incorporating both
quantitative and qualitative indicators (2,14). The
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evaluation was conducted by two board-certified
OMFSs, who independently and blindly scored all
200 responses. The responses—randomized across
both models—were anonymized such that evaluators
were unaware of the originating model. Both raters
possessed advanced proficiency in English and native-
level fluency in Turkish, ensuring reliable linguistic
judgment across both language sets.

Question difficulty was categorized as easy, medium,
or hard based on Goodman et al. (17). Accuracy was
rated on a 6-point Likert scale, and completeness on
a 3-point scale, with intermediate scores reflecting
partial correctness. Readability was assessed using
language-specific tools: the Flesch-Kincaid Grade Level
(FKGL) for English (7,18) and the Atesman Formula for
Turkish (19-21). Overall answer quality was evaluated
using the 5-point Global Quality Score (GQS), reflecting
scientific accuracy, clarity, and informativeness (22).
Text length was calculated as total word count using
Microsoft Word (Microsoft Corporation, Redmond,
WA, USA) (see Table 2 for detailed scoring criteria).

The FKGL score is derived from average sentence
length and syllables per word, with lower scores
indicating simpler, more accessible language (18).
For TR responses, readability was evaluated using
the Atesman Formula, a well-established metric
adapted from the Flesch Reading Ease Index (FREI) for
the TR language. The formula incorporates average
word and sentence lengths to generate a numerical
readability score, where higher values indicate
easier comprehension (19,23). In addition, Microsoft
Word’s built-in readability analysis was used as a
supplementary tool to validate the scoring consistency.

Statistics

All statistical analyses were performed using SPSS
version 26.0 (IBM Corp., Armonk, NY, USA). Descriptive
statistics were used to summarize participant and
response characteristics. The normality of continuous
variables was assessed using the Shapiro-Wilk test
(p <0.001). For variables that did not follow a normal
distribution, non-parametric tests were employed,
including the Mann-Whitney U test and Kruskal-Wallis
test for group comparisons. The inter-rater agreement
between the two evaluators was analyzed using the
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Table 2. Evaluation framework for model responses

Evaluation Dimension | Metric/Tool Scale/Range Description
Easy Classification based on clinical and linguistic
Question difficulty Cathegorical Medium complexit
Hard prexity
1 = Completely incorrect
2 = Mostly incorrect
Accurac 6-Point 1-6 3 = Contains some factual errors
y Likert Scale 4 = Partially correct
5 = Mostly accurate
6 = Completely accurate
. 1 = Inadequate
Completeness 3.—P0|nt 1-3 2 = Moderately complete
Likert Scale
3 = Comprehensive
1-5 = Very easy to read
. 6-8 = Easy to read
Readability (English) tclilseclh(;:f(lglc_?ld Grade (Geradegl%\;el 9-12 = Fairly difficult / Standard
8 - 13-16 = Difficult to read
17+ = Very difficult / Academic or technical material
90-100 = Very easy to read
70-89 = Easy to read
Readability (Turkish) Ateman Formula/ Score 50-69 = Fairly difficult / Standard
Microsoft Word (e.g., 0-100)
oY 30-49 = Difficult to read
0-29 = Very difficult / Academic or technical material
1 =Very poor
Global Quality Score 2 = Poor
Overall quality (GQS) 1-5 3 = Moderate
4 = Good
5 = Excellent quality
Microsoft Word Numeric word .
Text length (Microsoft Corp,, USA) | count Total number of words in the model response

Intraclass Correlation Coefficient (ICC) and Weighted
Cohen's Kappa. Furthermore, the inter-observer
consistency was appraised by means of the Wilcoxon
signed-rank test. All results were interpreted within
a 95% confidence interval, and a p-value <0.05 was
considered statistically significant.

RESULTS

The majority of the questions were categorized
under the headings "Postoperative Complications &
Rehabilitation" and "Long-Term Outcomes," with a
balanced distribution across language groups, chatbots,
and observers. Descriptive statistics for question
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difficulty, word count, accuracy, completeness,
readability, and overall quality are presented in Table
3.

Statistical comparisons revealed significant differences
in difficulty scores based on question category (p
<0.001), with “Diagnosis & Indication” questions rated
as significantly more difficult than those in “Surgical
Process & Timing” and “Postoperative Complications &
Rehabilitation”. Word count did not vary significantly
by category. Despite the higher difficulty scores,
accuracy scores were also significantly higher in the
“Diagnosis & Indication” compared to “Postoperative
Complications & Rehabilitation” category (p = 0.013)
(Table 4).



Table 3. Descriptive statistics about questionnaire

Variables Mean. £ S.D. Median
(Min.Max.)

Difficulty 1.9+0.7 2(1-3)
Word count 289.8 +108.3 279 (81-596)
Accuracy 49+0.9 5(3-6)
Completeness 2.7+0.5 3(2-3)
Readability 39+1.1 4(2-6)
Quality 3.9+0.9 4(2-5)
Category n %
Diagnosis & Indication 40 20
Treatment & Planning 32 16
Operation process & Time 24 12

Postoperative
Complications & 56 28
Rehabilitation

Long term results 48 24
Language n %
TR 100 50
ENG 100 50
Chatbot n %
ChatGPT 100 50
DeepSeek 100 50
Observer n %
Observer-I 100 50
Observer-I| 100 50

Language comparisons showed that EN responses had
significantly higher word counts (p<0.001), higher
accuracy (p = 0.047), and higher readability scores
(p <0.001) compared to TR responses (Table 5). No
statistically significant differences were observed
between ChatGPT and DeepSeek models in terms
of difficulty, word count, accuracy, completeness,
readability, or quality (Table 4). Similarly, completeness
and quality scores did not significantly differ by
language (Table 5).

A comparison of the evaluators' scores revealed
significant discrepancies in the completeness ratings
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(p <0.001), with Observer | assigned higher ratings
than Observer Il. In a similar vein, Observer | provided
substantially higher quality scores. Despite these
differences, the inter-rater reliability was found to
be strong to perfect across all evaluation criteria,
with ICC and weighted Cohen's Kappa values ranging
from 0.374 to 1.000 (p <0.001 for all metrics). These
findings suggest that while subjective interpretation
may influence dimensions, particularly
completeness and quality, the overall scoring
framework demonstrated a high level of consistency
and reliability between evaluators (Table 5).

certain

DISCUSSION

In this study, responses generated by two large
language models—ChatGPT-4.5 and DeepSeek-
V3-R1—to patient questions on orthognathic surgery
were evaluated using a multidimensional framework.
Analysis of 200 outputs showed that both models
produced responses with high accuracy and quality,
and similar word count and scope. However, EN
responses significantly outperformed TR ones in terms
of accuracy and readability, likely due to the uneven
distribution of training data across languages (24).
Notably, the “Diagnosis & Indication” category, despite
its higher difficulty level, received the highest accuracy
scores—contrary to previous findings (6). This
suggests that structured knowledge domains, such as
diagnostic content, may enhance model performance
even on complex queries.

The methodological framework of this study aligns
with prior research in the field (6,17,25,26). In
designing the evaluation protocol, several established
health content quality assessment guidelines were
reviewed, including METRICS, CLEAR (Communication,
Language, Evaluation, and Review), and MI-CLEAR-
LLM (Minimum Reporting Items for Clear Evaluation
of Accuracy Reports of Large Language Models in
Healthcare) (11,27,28). The most applicable and
pragmatic elements from these frameworks were
selectively integrated into the METRICS-based
assessment applied in this study.
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Previous studies have shown that LLMs generally
provide satisfactory responses to medical questions
intended for patient education. Goodman et al. and
Beheshti et al. reported that models such as ChatGPT
are capable of generating accurate and useful medical
content (17,29). Comparative evaluations of various
LLMs—such as ChatGPT, Gemini, Bard, Claude,
Copilot, and DeepSeek—indicate that ChatGPT is the
most frequently studied model, with English being
the dominant language of analysis (5-9,22). While
direct comparisons between ChatGPT and DeepSeek
remain limited, it has been showed that both models
performed similarly when responding to complex,
multi-domain queries—an observation that aligns with
our own findings (10,23).

In the present study, open-ended, prompt-
free questions were used to simulate a realistic
conversational setting. The impact of prompt usage and
question format on model performance has also been
addressed in the literature, particularly in healthcare,
where the absence of prompts in open-ended queries
has been linked to accuracy issues (e.g., hallucination
effects) (6,7,14,30-32). In their systematic review,
Beheshti et al. highlighted that many studies failed
to evaluate the influence of prompt design (29).
Nevertheless, further research is warranted to clarify
the role of prompt engineering in medical applications.

This study offers one of the first comparative analyses
of two LLMs across both EN and TR, addressing the
gap in the literature where evaluations are often
limited to a single language (2,17,26). The dominance
of EN in model training and the lack of standardized
cross-linguistic evaluation metrics contribute to this
limitation (24).

Readability was assessed using language-specific
tools: the FKGL for EN and the Atesman Formula for
Turkish (a well-established metric adapted from
the FREI) (18,21). To our knowledge, this is the first
study to directly compare the readability of ChatGPT
and DeepSeek responses in TR versus EN. While the
American Medical Association (AMA) and National
Institutes of Health (NIH) recommend health materials
be written at a sixth-grade reading level (4), our
findings, consistent with previous work (14,26), show
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that most responses exceed this threshold. Notably,
TR responses exhibited lower (i.e., better) readability
scores, suggesting improved accessibility for native
speakers.

Prompt usage has been shown to enhance factual
accuracy but not necessarily readability (7). Overall, the
higher accuracy and readability of EN responses likely
reflect the greater volume of training data in EN (24).
These findings underscore the need for multilingual
training and evaluation strategies, especially for low-
resource languages like TR. Moreover, differences in
text length and linguistic structure may also influence
readability outcomes. By addressing the bilingual
evaluation gap, this study contributes to promote
equitable and comprehensible health communication
(2,14,26).

Previous research indicates that online sources,
including social media, provide predominantly low-
quality orthognathic surgeryinformation, characterized
by subjective patient experiences (33). Bavbek et al.
particularly highlighted the poor quality of Turkish-
language online resources on orthognathic surgery
(3). However, recent advances in Al-based chatbots,
such as ChatGPT and Google Gemini, have significantly
enhanced content reliability by incorporating academic
literature and professional guidelines (2,14). Despite
these improvements, issues regarding readability and
accuracy persist, warranting cautious integration into
clinical practice (4). Notably, no prior studies have
evaluated DeepSeek’s performance in orthognathic
patient education, emphasizing our study’s novel
contribution in comparing model performance across
languages, particularly in TR.

This study offers several strengths, including the
evaluation of four model-language combinations,
the ontological categorization of patient questions,
blinded expert-based scoring, and a multidimensional
assessment framework encompassing accuracy,
completeness, readability, and quality. Furthermore,
although there is currently no consensus on
standardized  criteria for evaluating chatbot
performance in health literacy contexts (11,14,27,28),
this study addressed that gap by adapting elements
from existing guidelines—particularly the METRICS



framework—to guide its evaluation process.
However, certain limitations of this study should be
acknowledged.

First, the limited sample size may not fully capture the
range of responses these models can generate. Both
question development and scoring were conducted
by two OMFSs from the same institution, potentially
introducing selection bias. Nonetheless, the inclusion
of inter-rater reliability analysis partially mitigates this
limitation.

The reproducibility of model outputs could not be
assessed, as each question was asked only once
and sessions were not repeated. Additionally,
restricting the study to only two widely used LLMs
limits the generalizability of the findings. The lack of
transparency in source usage and inconsistent citation
practices may also affect the perceived accuracy of
content (14,29). Although both models exhibited
citation behaviors, inconsistencies in source attribution
prevented statistical analysis. Moreover, the assertive
tone adopted by LLMs may create a false sense of
confidence among users, which has been noted in
previous studies (17,29).

Finally, while this study aimed to address the limitations
of monolingual evaluations by including both EN and
TR, structural differences between the two languages
pose inherent challenges for direct comparison.
Despite these limitations, this study remains one of
the few bilingual and multidimensional evaluations of
LLMs in the specialized field of orthognathic surgery,
offering a foundation for future research.

CONCLUSIONS AND SUGGESTIONS

This study demonstrated that large language models,
specifically ChatGPT-4.5 and DeepSeek-V3-R1,
are capable of producing accurate and clinically
relevant responses to patient-centered questions in
orthognathic surgery. While both models performed
similarly in overall quality, responses in EN showed
higher readability and accuracy than those in TR.
Differences across clinical categories and the presence
of moderate inter-observer variability emphasize
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the need for standardized evaluation frameworks.
With careful implementation and ongoing validation,
LLMs may serve as valuable tools to support patient
education and preoperative communication in oral and
maxillofacial surgery settings.
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