Abstract
Aim: The goal is to classify Salmonella enterica using whole genome sequencing reads and explore their functional profiles. This approach simplifies resolving phylogenetic ambiguities in higher taxa compared to traditional methods.
Materials and Methods: Salmonella paired-end reads (SRA: SRR27334358) were obtained from the NCBI database and analyzed for quality using FastQC v0.12.1, with low-quality reads trimmed by Trimmomatic v0.36. De novo genome assembly was performed by using Unicycler v0.4.8, with subsequent gene annotation by using RAST. TYGS was utilized for taxonomic analysis. ResFinder v.2.1 identified antimicrobial resistance genes, and PathogenFinder v.1.1 was used for pathogenicity prediction. MLST analyzed the allele profile. CRISPR regions and proteins were identified by CRISPRCasFinder, while AntiSMASH 7.0.1 determined secondary metabolites. SPIFinder detected pathogenicity islands, and the genome map was created using the CGView server. RAST performed genomic functional classification.
Results: The genome, spanning 4,720,639 bp with 36 contigs, was analyzed by RAST, revealing 366 subsystems. TYGS showed a 100% dDDH with S. enteritidis ATCC 13076. The aac(6')-Iaa gene, conferring resistance to amikacin and tobramycin, was detected. PathogenFinder predicted S. enterica as a human pathogen with a 0.942 probability. MLST revealed 100% similarity with alleles of 7 housekeeping genes of Salmonella. CRISPRFinder identified eight Type I CRISPR-Cas proteins. AntiSMASH detected two secondary metabolites: enterobactin and O-antigen. SPIFinder identified 12 SPIs across the subspecies S. Typhimurium, S. Typhi, S. Enteritidis, S. Choleraesuis, and S. Gallinarum.
Conclusion: The genome showed 100% digital DNA-DNA hybridization (dDDH) with Salmonella enteritidis ATCC 13076 and was identified as a human pathogen. Recognizing pathogenic strains is crucial for timely intervention, control strategy design, and targeted vaccine development.
Keywords: Salmonella enterica, serovar, Salmonella Pathogenicity Islands, virulence
Copyright and license
Copyright © 2025 The Author(s). This is an open-access article published by Bolu İzzet Baysal Training and Research Hospital under the terms of the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium or format, provided the original work is properly cited.
How to cite
References
- Coburn B, Grassl GA, Finlay BB. Salmonella, the host and disease: a brief review. Immunol Cell Biol. 2007; 85(2): 112-8. https://doi.org/10.1038/sj.icb.7100007
- Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000; 38(7): 2465-7. https://doi.org/10.1128/JCM.38.7.2465-2467.2000
- Fierer J, Guiney DG. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest. 2001; 107(7): 775-80. https://doi.org/10.1172/JCI12561
- LeLièvre V, Besnard A, Schlusselhuber M, Desmasures N, Dalmasso M. Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol. 2019; 78: 89-98. https://doi.org/10.1016/j.fm.2018.10.009
- Grimont PAD, Weill F-X. Antigenic formulae of the Salmonella serovars. 9th ed. Geneva: World Health Organization, Institut Pasteur; 2007. Available at: https://www.pasteur.fr/sites/default/files/veng_0.pdf
- Takaya A, Yamamoto T, Tokoyoda K. Humoral Immunity vs. Salmonella. Front Immunol. 2020; 10: 3155. https://doi.org/10.3389/fimmu.2019.03155
- Mohsen Y, Tarchichi N, Barakat R, et al. The Different Types of Metallophores Produced by Salmonella enterica: A Review. Microbiology Research. 2023; 14(3): 1457-69. https://doi.org/10.3390/microbiolres14030099
- Blaser MJ, Feldman RA. From the centers for disease control. Salmonella bacteremia: reports to the Centers for Disease Control, 1968-1979. J Infect Dis. 1981; 143(5): 743-6. https://doi.org/10.1093/infdis/143.5.743
- Bhunia AK. Salmonella enterica. In: Foodborne microbial pathogens: Mechanisms and pathogenesis. 2018; 271-87. https://doi.org/10.1007/978-1-4939-7349-1_15
- Que F, Wu S, Huang R. Salmonella pathogenicity island 1(SPI-1) at work. Curr Microbiol. 2013; 66(6): 582-7. https://doi.org/10.1007/s00284-013-0307-8
- Fàbrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013; 26(2): 308-41. https://doi.org/10.1128/CMR.00066-12
- McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 1995; 92(5): 1664-8. https://doi.org/10.1073/pnas.92.5.1664
- Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells. Nat Rev Microbiol. 2008; 6(1): 53-66. https://doi.org/10.1038/nrmicro1788
- Barış S, Yavaş C, Atan Uzun Ç, Kaya Akca Ü, Doğan M, Eröz R. The Frequency of MEFV Gene Mutation Types in Familial Mediterranean Fever Patients and Evaluation of the Relationship Between Gene Mutation and Clinical Findings in Patients. Dicle Medical Journal. 2023; 50(4): 545-52. https://doi.org/10.5798/dicletip.1412077
- Yavaş C, Doğan M, Eröz R, Canat HL. Evaluation of Y Chromosome Microdeletion and Chromosome Analysis Results in Infertile Male Patients. Konuralp Medical Journal. 2023; 15(3): 383-9. https://doi.org/10.18521/ktd.1299776
- Barış S, Yavaş C, Balasar Ö, Gördü Z, Doğan M, Eröz R. The Genotypes of α-Thalassemia and Genotypes Frequencies of α- Thalassemia in Western Aegean Region. Value in Health Sciences. 2023; 13(2): 257-62. https://doi.org/10.33631/sabd.1247255
- Doğan M, Gezdirici A, Yavaş C, Eröz R. Evaluation of Both Chromosome Analysis and Thrombophilia Parameters of 306 Couples Studying for Recurrent Pregnancy Loss: A Single Center Experience. Value in Health Sciences. 2022; 12(2): 280-5. https://doi.org/10.33631/sabd.1068185
- Yavas C, Ozgenturk NO, Dogan M, et al. A Deeper Insight into COL4A3, COL4A4, and COL4A5 Variants and Genotype-Phenotype Correlation of a Turkish Cohort with Alport Syndrome. Mol Syndromol. 2024; 15(1): 1-13. https://doi.org/10.1159/000533915
- Yavaş C, Doğan M, Eröz R, Türegün K. A rare TNNT1 gene variant causing creatine kinase elevation in nemaline myopathy: c.271_273del (p.Lys91del). Genes Genomics. 2024; 46(5): 613-20. https://doi.org/10.1007/s13258-024-01502-0
- Yavaş C, Ün C, Çelebi E, et al. Whole-Exome Sequencing (WES) results of 50 patients with chronic kidney diseases: a perspective of Alport syndrome. Rev Assoc Med Bras (1992). 2022; 68(9): 1282-7. https://doi.org/10.1590/1806-9282.20220405
- Hejnova J, Pages D, Rusniok C, Glaser P, Sebo P, Buchrieser C. Specific regions of genome plasticity and genetic diversity of the commensal Escherichia coli A0 34/86. Int J Med Microbiol. 2006; 296(8): 541-6. https://doi.org/10.1016/j.ijmm.2006.06.007
- Wattiau P, Van Hessche M, Schlicker C, Vander Veken H, Imberechts H. Comparison of classical serotyping and PremiTest assay for routine identification of common Salmonella enterica serovars. J Clin Microbiol. 2008; 46(12): 4037-40. https://doi.org/10.1128/JCM.01405-08
- Laing CR, Whiteside MD, Gannon VPJ. Pan-genome Analyses of the Species Salmonella enterica, and Identification of Genomic Markers Predictive for Species, Subspecies, and Serovar. Front Microbiol. 2017; 8: 1345. https://doi.org/10.3389/fmicb.2017.01345
- Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010; 60(Pt 1): 249-66. https://doi.org/10.1099/ijs.0.016949-0
- Ramasamy D, Mishra AK, Lagier JC, et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol. 2014; 64(Pt 2): 384-91. https://doi.org/10.1099/ijs.0.057091-0
- Rodrigues GL, Panzenhagen P, Ferrari RG, Dos Santos A, Paschoalin VMF, Conte-Junior CA. Frequency of Antimicrobial Resistance Genes in Salmonella From Brazil by in silico Whole-Genome Sequencing Analysis: An Overview of the Last Four Decades. Front Microbiol. 2020; 11: 1864. https://doi.org/10.3389/fmicb.2020.01864
- Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One. 2013; 8(10): e77302. https://doi.org/10.1371/journal.pone.0077302
- Dos Santos AMP, Ferrari RG, Conte-Junior CA. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. Curr Microbiol. 2019; 76(6): 762-73. https://doi.org/10.1007/s00284-018-1510-4
- Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Front Cell Infect Microbiol. 2017; 7: 428. https://doi.org/10.3389/fcimb.2017.00428
- Ginocchio CC, Rahn K, Clarke RC, Galán JE. Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun. 1997; 65(4): 1267-72. https://doi.org/10.1128/iai.65.4.1267-1272.1997
- Marcus SL, Brumell JH, Pfeifer CG, Finlay BB. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect. 2000; 2(2): 145-56. https://doi.org/10.1016/s1286-4579(00)00273-2
- Faucher SP, Viau C, Gros PP, Daigle F, Le Moual H. The prpZ gene cluster encoding eukaryotic-type Ser/Thr protein kinases and phosphatases is repressed by oxidative stress and involved in Salmonella enterica serovar Typhi survival in human macrophages. FEMS Microbiol Lett. 2008; 281(2): 160-6. https://doi.org/10.1111/j.1574-6968.2008.01094.x
- Saroj SD, Shashidhar R, Karani M, Bandekar JR. Distribution of Salmonella pathogenicity island (SPI)-8 and SPI-10 among different serotypes of Salmonella. J Med Microbiol. 2008; 57(Pt 4): 424-7. https://doi.org/10.1099/jmm.0.47630-0
- Shah DH, Lee MJ, Park JH, et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology (Reading). 2005; 151(Pt 12): 3957-68. https://doi.org/10.1099/mic.0.28126-0
- Fabre L, Zhang J, Guigon G, et al. CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS One. 2012; 7(5): e36995. https://doi.org/10.1371/journal.pone.0036995
- Sorek R, Kunin V, Hugenholtz P. CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008; 6(3): 181-6. https://doi.org/10.1038/nrmicro1793
- Shariat N, Timme RE, Pettengill JB, Barrangou R, Dudley EG. Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology (Reading). 2015; 161(2): 374-86. https://doi.org/10.1099/mic.0.000005
- Shariat N, DiMarzio MJ, Yin S, et al. The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol. 2013; 34(1): 164-73. https://doi.org/10.1016/j.fm.2012.11.012
- Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011; 9(6): 467-77. https://doi.org/10.1038/nrmicro2577
- Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM. Diversity of CRISPR loci in Escherichia coli. Microbiology (Reading). 2010; 156(5): 1351-61. https://doi.org/10.1099/mic.0.036046-0
- Saha P, Xiao X, Yeoh BS, et al. The bacterial siderophore enterobactin confers survival advantage to Salmonella in macrophages. Gut Microbes. 2019; 10(3): 412-23. https://doi.org/10.1080/19490976.2018.1546519
- Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev. 2002; 26(1): 17-47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x
- Plainvert C, Bidet P, Peigne C, et al. A new O-antigen gene cluster has a key role in the virulence of the Escherichia coli meningitis clone O45:K1:H7. J Bacteriol. 2007; 189(23): 8528-36. https://doi.org/10.1128/JB.01013-07
- Kimura B. Will the emergence of core genome MLST end the role of in silico MLST? Food Microbiol. 2018; 75: 28-36. https://doi.org/10.1016/j.fm.2017.09.003
- Zakaria Z, Hassan L, Sharif Z, et al. Analysis of Salmonella enterica serovar Enteritidis isolates from chickens and chicken meat products in Malaysia using PFGE, and MLST. BMC Vet Res. 2020; 16(1): 393. https://doi.org/10.1186/s12917-020-02605-y
- Nedialkova LP, Denzler R, Koeppel MB, et al. Inflammation fuels colicin Ib-dependent competition of Salmonella serovar Typhimurium and E. coli in enterobacterial blooms. PLoS Pathog. 2014; 10(1): e1003844. https://doi.org/10.1371/journal.ppat.1003844
- Riley M, Gordon D. The ecology and evolution of bacteriocins. Journal of Industrial Microbiology and Biotechnology. 1996; 17(3-4): 151-8. https://doi.org/10.1007/BF01574688
- Drury LS, Buxton RS. Identification and sequencing of the Escherichia coli cet gene which codes for an inner membrane protein, mutation of which causes tolerance to colicin E2. Mol Microbiol. 1988; 2(1): 109-19. https://doi.org/10.1111/j.1365-2958.1988.tb00012.x
- Wagner C, Hensel M. Adhesive mechanisms of Salmonella enterica. Adv Exp Med Biol. 2011; 715: 17-34. https://doi.org/10.1007/978-94-007-0940-9_2
- Laskin AI, Bennett JW, Gadd GM. Advances in applied microbiology. Academic Press; 2003.
- Batten KM, Scow KM. Sediment microbial community composition and methylmercury pollution at four mercury mine-impacted sites. Microb Ecol. 2003; 46(4): 429-41. https://doi.org/10.1007/s00248-003-1005-z
- Barkay T, Kritee K, Boyd E, Geesey G. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol. 2010; 12(11): 2904-17. https://doi.org/10.1111/j.1462-2920.2010.02260.x
- Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005; 41(Suppl 2): S120-6. https://doi.org/10.1086/428052
- Li J, Hao H, Sajid A, Zhang H, Yuan Z. Fluoroquinolone resistance in Salmonella: mechanisms, fitness, and virulence. In: Mascellino MT, editor. Salmonella – A Re-emerging Pathogen. Rijeka: IntechOpen; 2018. https://doi.org/10.5772/intechopen.74699
- Mustafa GR, Zhao K, He X, et al. Heavy Metal Resistance in Salmonella Typhimurium and Its Association With Disinfectant and Antibiotic Resistance. Front Microbiol. 2021; 12: 702725. https://doi.org/10.3389/fmicb.2021.702725